Boiling Line
($T_t\leq T\leq T_c$):
\[
p_b=p_c\times e^{\frac{T_c}{T}\left(a_1\phi+a_2\phi^{1.5}+a_3\phi^2+a_4\phi^{4.5}\right)}
\]
with
\[
\phi=(1-T/T_c), \quad
T_c = 150.687 \text{K}, \quad
p_c = 4.863 \text{MPa}, \quad
a_1 = -5.9409785, \\
a_2 = 1.3553888, \quad
a_3 = -0.46497607, \quad
a_4 = -1.5399043
\]
Melting Line
\[
p_m=p_t\left(1+a_1\left[\left(\frac{T}{T_t}\right)^{1.05}-1\right]+a_2\left[\left(\frac{T}{T_t}\right)^{1.275}-1\right]\right)
\]
with
\[
T_t = 83.8058 \text{K}, \quad
p_t = 0.068891 \text{MPa}, \quad
a_1 = -7476.2665, \quad
a_2 = 9959.0613
\]
Sublimation Line
\[P_{sub}=P_t\times e^{\frac{T_t}{T}\left[a_1\left(1-\frac{T}{T_t}\right)+a_2\left(1-\frac{T}{T_t}\right)^{2.7}\right]}\]
with
\[
T_t = 83.8058 \text{K}, \quad
p_t = 0.068891 \text{MPa}, \quad
a_1 = -11.391604, \quad
a_2 = -0.39513431
\]
LAr Density
$(T_t\leq T \leq T_c)$:
\[
\rho_{liquid}=\rho_c\times e^{A\cdot t^{0.334}+B\cdot t^{2/3}+C \cdot t^{7/3}+D\cdot t^4}
\]
with
\[
t=(1-T/T_c), \quad
T_c = 150.687 \text{K}, \quad
\rho_c = 0.5356 \text{g/cm}^3, \quad
A = 1.5004262, \quad
B = -0.31381290, \quad\\
C = 0.086461622, \quad
D = -0.041477525, \quad
\]
Enthalpy
Fit to enthalpy data from Ref [1], the enthalpy of
vaporization $\Delta H$ in kJ/mol as a function of temperature
$T$ for $T$: \[
\Delta H=\frac{A+B\cdot T}{1+C\cdot T},
\]
\[
A = 7.98304, \quad
B = -0.0481275, \quad
C = -0.0047259
\]